NEET (UG) / JEE-MAIN /ADVANCED

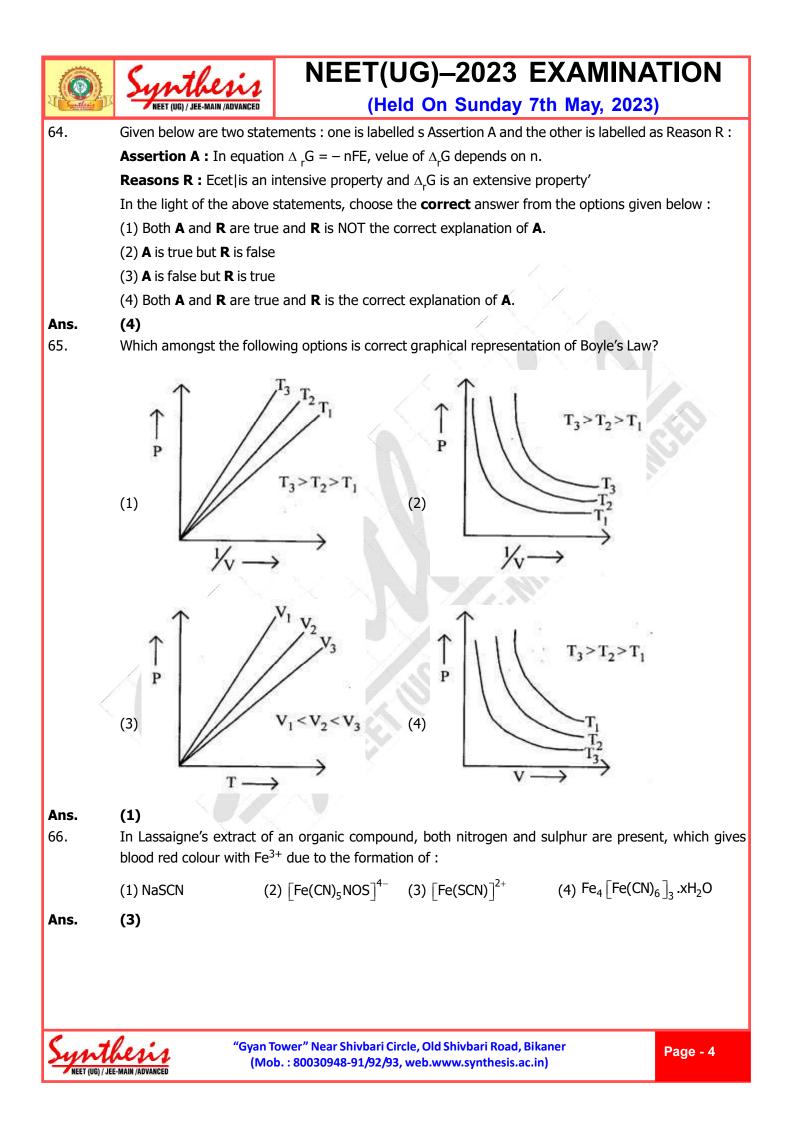
Paner Code : E6

NEET(UG)-2023 EXAMINATION

(Held On Sunday 7th May, 2023)

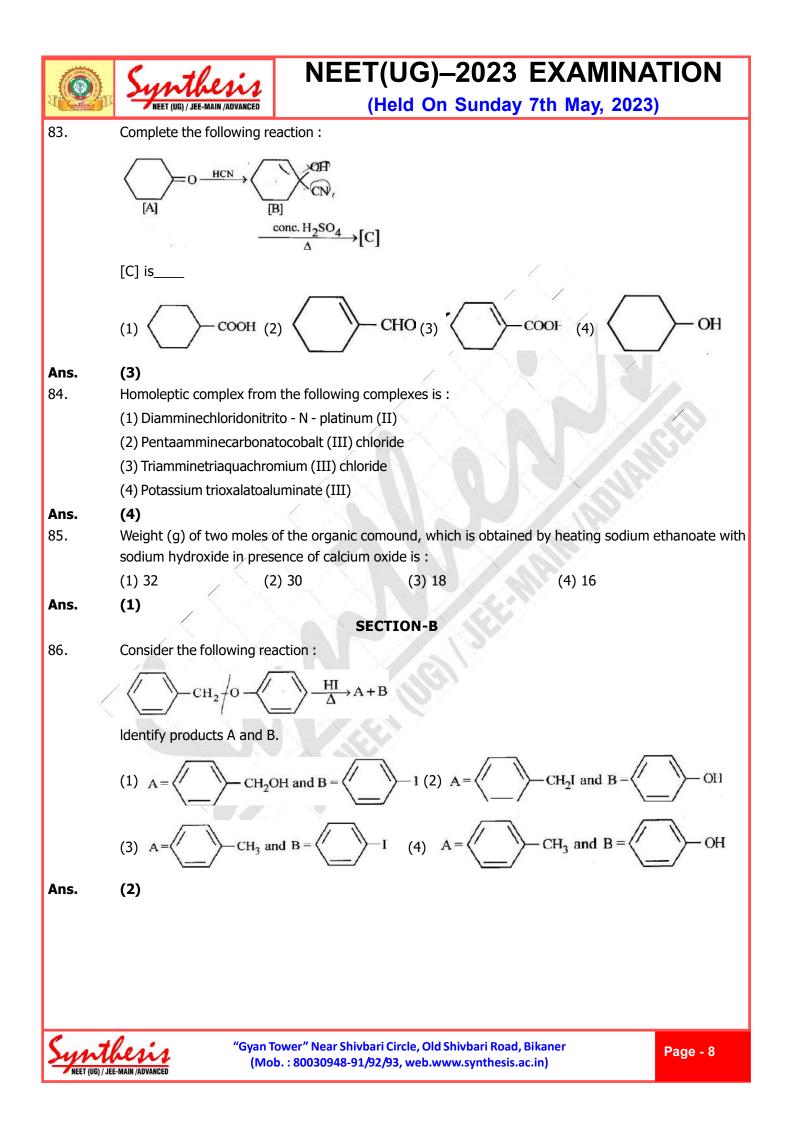
Test Date : 07.05.2023

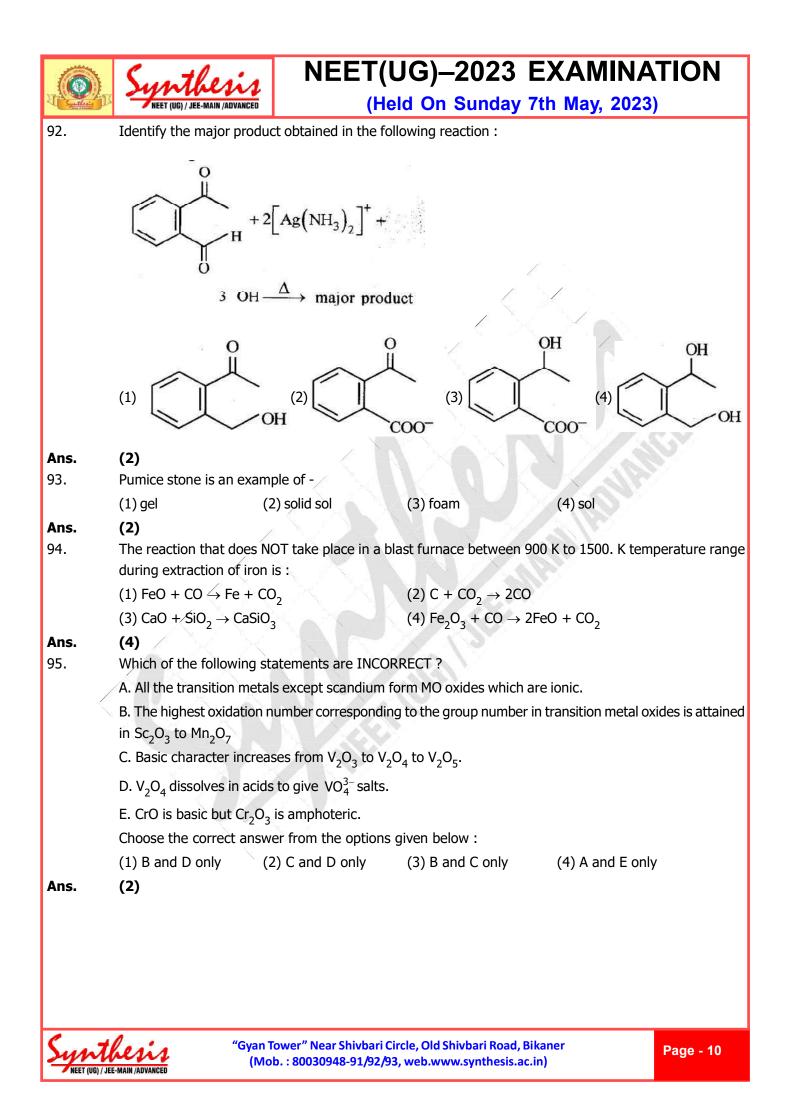
CHEMISTRY


(Question Paper with Answer)


	SECTION-A						
51.	Given below are two statements : one is labelled as Assertion A and the other is is labelled as Reason R :						
	 Assertion A : Metallic sodium dissolves in liquid ammonia giving a deep blue solution, which is paramagnet Reasons R : The deep blue solution is due to the formation of amide. In the light of the above statement choose the correct answer from the options given below : (1) Both A and R are true but R is NOT the correct A is true explanation but R is false of A. (2) A is true but R is false. (3) A is false but R is true. (4) Both A and R are true and R is the correct explanation of A. 						
Ans.	(2)						
52.	The conductivity of centimolar solution of KCl a5 25° C is 0.0210 ohm ⁻¹ cm ⁻¹ and the resistance of the cell containing the solution at 25°C is 60 ohm. The value of cell constant is :						
	(1) 3.28 cm^{-1} (2) 1.26 cm^{-1} (3) 3.34 cm^{-1} (4) 1.34 cm^{-1}						
Ans.	(2)						
53.	For a certain reaction, the rate $=k[A]^2$ [B], when the initial concentration of A is tripled keeping concentration of B constant, the initial rate would (1) increase by a factor of six.						
	(2) increase by a factor of nine.						
	(3) increase by a factor of three.(4) decrease by a factor of nine						
Ans.	(2)						
54.							
	(1) (1) (1) (1) (1) (1) (1) (2)						
Syr	(VG) / JEE-MAIN /ADVANCED "Gyan Tower" Near Shivbari Circle, Old Shivbari Road, Bikaner (Mob. : 80030948-91/92/93, web.www.synthesis.ac.in) Page - 1						

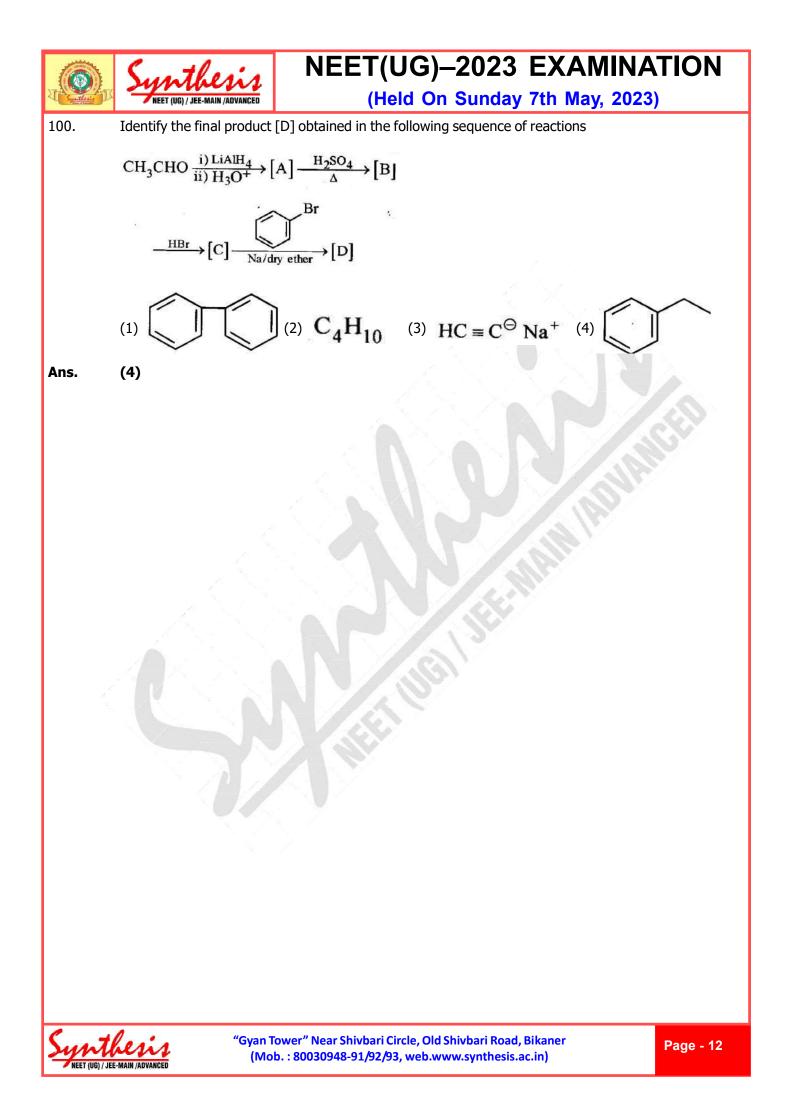
	NEET(UG)-2023 EXAMINATION (Held On Sunday 7th May, 2023)				
Ans. 55.	 (4) Which one is an example of heterogenous catalysis ? (1) Hydrolysis of sugar catalysed by H⁺ ions. (2) Decomposition of ozone in presence of nitrogen monoxide. (3) Combination between dinitrogen and dihydrogen to form ammonia in the presence of finely divided iron. (4) Oxidation of sulphur dioxide into sulphur trioxide in the presence of oxides of nitrogen 				
Ans. 56.	 (3) Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R Assertion A : Helium is used to dilute oxygen in diving apparatus. Reasons R : Helium has high solubility in O₂. In the light of the above statements, choose the correct answer from the options given below : (1) Both A and R are true and R is NOT the correct explanation of A. (2) A is true but R is false. (3) A is false but R is true. (4) Both A and R are true and R is the correct explanation of A. 				
Ans. 57.	 (2) Amongst the following the total number of species NOT having eight electrons around central atom in its oute most shell, is : NH₃, AlCl₃, BeCl₂, CCl₂, PCl₅ : (1) 2 (2) 4 (3) 1 (4) 3 				
Ans. 58.	(1) 2 (2) 4 (3) 1 (4) 5 (4) The correct order of energies of molecular orbitals of N ₂ molecule is : (1) $\sigma s < \sigma^* s < \sigma 2s < \sigma^* 2s < \sigma 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z$ (2) $\sigma s < \sigma^* s < \sigma 2s < \sigma^* 2s < \sigma 2p_z < \sigma^* 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y)$ (3) $\sigma s < \sigma^* s < \sigma 2s < \sigma^* 2s < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y) < \sigma 2p_z < \sigma^* 2p_z$ (4) $\sigma s < \sigma^* s < \sigma 2s < \sigma^* 2s < (\pi 2p_x = \pi 2p_y) < \sigma 2p_z < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z$				
Ans.	(4)				


	NEET(UG)-2023 EXAMINATION						
A Sundhesis	NEET (UG) / JEE-MAIN /AI	DVANCED	(Held On Sunda	y 7th May, 2023	3)		
59.	Match List-I with List-II :						
	List - I	I List-II					
	A. Cock I. Carbon atoms are sp ³ hybridised.						
	B. Diamond	II. Used as a dry lubricant					
	C. Fullerene	III. Used as a reducing agent					
	D. Graphite	IV. Cage like mole	IV. Cage like molecules				
	Choose the corre	ct answer from the op	wer from the options given below :				
	(1) A-IV, B-I, C-II, [D-III (2) A-III, B-I, C-I	2) A-III, B-I, C-IV, D-II (3) A-III, B-IV, C-I, D-II (4) A-II, B-IV, C-I, D-III				
Ans.	(2)						
60.	The number of σ b	bonds, π bonds and lor	ne pair of electrons in py	vridine, respectively are	e :		
	(1) 12,3,0	(2) 11,3,1	(3) 12,2,1	(4) 11,2,0			
Ans.	(2)						
61.	The element expe	cted to form largest io	n, to achieve the neares	st noble gas configurati	on is :		
	(a) F	(2) N	(3) Na	(4) 0			
Ans.	(2)	C.					
62.	Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason						
	Assertion A : A reaction can have zero activation energy.						
In the light of the above statements, choose the correct answer from the options given (1) Both A and R are true and R is NOT the correct explanation of A. (2) A is true but R is false (3) A is false but R is true.					n below :		
 (4) Both A and R are true and R is the correct explanation of A. Ans. (3) 63. Consider the following reaction and identify the product (P). 							
	$\begin{array}{c} CH_{3} - CH - CH - CH_{3} \\ & \\ CH_{3} & OH \end{array} \xrightarrow{HBr} Product (P)$						
3 - Methylbutan - 2 - ol							
	(1) $CH_3 CH = C$	$H - CH_3$	(2) $CH_3 - CH - C$	CH-CH ₃			
		\sim /	(2) CH ₃ - CH - CH ₃	Br			
	(4) CH = CH =	3 CH ₂ Br	$(4) \begin{array}{c} \mathbf{B} \\ \mathbf{CH}_{3} - \mathbf{C} \\ $	r – CH ₂ – CH ₃ H ₃			
Ans.	(4)	2	C	3			
Synt NEET (UG) /.	thesis JEE-MAIN (ADVANCED	"Gyan Tower" Near Shiv	oari Circle, Old Shivbari Roa /92/93, web.www.synthesis		Page - 3		



CI $H_2C = C - CH$ CH_3 $H_2C = C - CH$ ing stability as the InI ₃ > InI 3) in more stable that due to more effect ne tranquilizers are Meprobamate ich of the following Hydrogen is used to heavy water is used	Illowing molecules $= CH_2$ $I = CH_2$ factor which one of (2) AICI > AICI ₃ n InI due to less eff tiveness of inert pa e than InI and TII is e listed below. Whice (2) Valium g statements are No o reduce heavy me d to study reaction	on polymerization products (2) $H_2C = CH$ (4) $H_2C = C$ (4) $H_2C = C$ f the following represention (3) TII > TII ₃ Fectiveness of inert pair of ir effect in TI. Is more stable than TII ₃ . th one from the followintion (3) Veronal OT correct ? etal oxides to metals.	H - C = CH $CH - CH = CH_2$	bletha	
CI $H_2C = C - CH$ CH_3 $H_2C = C - CH$ ing stability as the InI ₃ > InI 3) in more stable that due to more effect ne tranquilizers are Meprobamate ich of the following Hydrogen is used to heavy water is used	$= CH_{2}$ $I = CH_{2}$ factor which one of (2) AlCl > AlCl_{3} n InI due to less eff tiveness of inert pa e than InI and TII is e listed below. Whice (2) Valium g statements are No o reduce heavy me d to study reaction	(2) $H_2C = CH$ (4) $H_2C = C$ (4) $H_2C = C$ f the following represen (3) TII > TII ₃ Fectiveness of inert pair e ir effect in TI. s more stable than TII ₃ . ch one from the followin (3) Veronal OT correct ? etal oxides to metals.	H - C = CH $CH - CH = CH_2$ at correct relationship : (4) TICl ₃ > TICl effect in In, while TII is more stal g belongs to barbiturates?	bletha	
CH_3 $H_2C = C - CH$ ing stability as the $InI_3 > InI$ 3) in more stable that due to more effect nee InI_3 more stable ne tranquilizers are Meprobamate ich of the following Hydrogen is used to heavy water is used	$I = CH_2$ factor which one of (2) AlCl > AlCl ₃ n InI due to less eff tiveness of inert pa e than InI and TII is e listed below. Whice (2) Valium g statements are No o reduce heavy me d to study reaction	(4) $H_2C = C$ f the following represen (3) TII > TII ₃ fectiveness of inert pair e ir effect in TI. s more stable than TII ₃ . th one from the followin (3) Veronal OT correct ?	CH – CH = CH ₂ at correct relationship : (4) TICl ₃ > TICl effect in In, while TII is more stat	bletha	
CH_3 $H_2C = C - CH_3$ ing stability as the $InI_3 > InI_3$ in more stable that due to more effect ne tranquilizers are Meprobamate ich of the following Hydrogen is used to heavy water is used	$I = CH_2$ factor which one of (2) AlCl > AlCl ₃ n InI due to less eff tiveness of inert pa e than InI and TII is e listed below. Whice (2) Valium g statements are No o reduce heavy me d to study reaction	(4) $H_2C = C$ f the following represen (3) TII > TII ₃ fectiveness of inert pair e ir effect in TI. s more stable than TII ₃ . th one from the followin (3) Veronal OT correct ?	CH – CH = CH ₂ at correct relationship : (4) TICl ₃ > TICl effect in In, while TII is more stat	bletha	
CH_3 $H_2C = C - CH_3$ ing stability as the $InI_3 > InI_3$ in more stable that due to more effect ne tranquilizers are Meprobamate ich of the following Hydrogen is used to heavy water is used	$I = CH_2$ factor which one of (2) AlCl > AlCl ₃ n InI due to less eff tiveness of inert pa e than InI and TII is e listed below. Whice (2) Valium g statements are No o reduce heavy me d to study reaction	f the following represen (3) TII > TII ₃ Fectiveness of inert pair e ir effect in TI. is more stable than TII ₃ . ch one from the followin (3) Veronal	t correct relationship : (4) TICI ₃ > TICI effect in In, while TII is more stal g belongs to barbiturates?	bletha	
ing stability as the $InI_3 > InI$ 3) a in more stable that due to more effect the tranquilizers are Meprobamate ich of the following Hydrogen is used to Heavy water is used	factor which one of (2) AlCl > AlCl ₃ n InI due to less eff tiveness of inert pa e than InI and TII is e listed below. Whic (2) Valium g statements are No o reduce heavy me d to study reaction	f the following represen (3) TII > TII ₃ Fectiveness of inert pair e ir effect in TI. is more stable than TII ₃ . ch one from the followin (3) Veronal	t correct relationship : (4) TICI ₃ > TICI effect in In, while TII is more stal g belongs to barbiturates?	bletha	
ing stability as the $InI_3 > InI$ 3) a in more stable that due to more effect the tranquilizers are Meprobamate ich of the following Hydrogen is used to Heavy water is used	factor which one of (2) AlCl > AlCl ₃ n InI due to less eff tiveness of inert pa e than InI and TII is e listed below. Whic (2) Valium g statements are No o reduce heavy me d to study reaction	f the following represen (3) TII > TII ₃ Fectiveness of inert pair e ir effect in TI. is more stable than TII ₃ . ch one from the followin (3) Veronal	t correct relationship : (4) TICI ₃ > TICI effect in In, while TII is more stal g belongs to barbiturates?	bletha	
ing stability as the $InI_3 > InI$ 3) a in more stable that due to more effect the tranquilizers are Meprobamate ich of the following Hydrogen is used to Heavy water is used	factor which one of (2) AlCl > AlCl ₃ n InI due to less eff tiveness of inert pa e than InI and TII is e listed below. Whic (2) Valium g statements are No o reduce heavy me d to study reaction	 (3) TII > TII₃ Fectiveness of inert pair end in effect in TI. Is more stable than TII₃. Is none from the followin (3) Veronal OT correct ? Etal oxides to metals. 	(4) TICI ₃ > TICI effect in In, while TII is more stal g belongs to barbiturates?	ble tha	
ing stability as the InI ₃ > InI 3) a in more stable that due to more effect nee InI ₃ more stable ne tranquilizers are Meprobamate ich of the following Hydrogen is used to Heavy water is used	 (2) AICI > AICI₃ n InI due to less efficiencess of inert particular to the second secon	 (3) TII > TII₃ Fectiveness of inert pair end in effect in TI. Is more stable than TII₃. Is none from the followin (3) Veronal OT correct ? Etal oxides to metals. 	(4) TICI ₃ > TICI effect in In, while TII is more stal g belongs to barbiturates?	ble tha	
$InI_3 > InI$ 3) $_3$ in more stable that $_3$ due to more effect a due to more effect a due to more stable ne tranquilizers are Meprobamate ich of the following Hydrogen is used to heavy water is used	 (2) AICI > AICI₃ n InI due to less efficiencess of inert particular to the second secon	 (3) TII > TII₃ Fectiveness of inert pair end in effect in TI. Is more stable than TII₃. Is none from the followin (3) Veronal OT correct ? Etal oxides to metals. 	(4) TICI ₃ > TICI effect in In, while TII is more stal g belongs to barbiturates?	ble tha	
3) ³ in more stable tha ³ due to more effect ace InI ₃ more stable me tranquilizers are Meprobamate ich of the following Hydrogen is used to Heavy water is used	n InI due to less eff tiveness of inert pa e than InI and TII is e listed below. Whic (2) Valium g statements are N o reduce heavy me d to study reaction	Fectiveness of inert pair e ir effect in Tl. s more stable than TlI ₃ . ch one from the followin (3) Veronal OT correct ?	effect in In, while TII is more sta g belongs to barbiturates?	ble tha	
in more stable tha due to more effect nce InI ₃ more stable ne tranquilizers are Meprobamate ich of the following Hydrogen is used to Heavy water is used	tiveness of inert pa e than InI and TII is e listed below. Whic (2) Valium g statements are No o reduce heavy me d to study reaction	ir effect in Tl. s more stable than TlI ₃ . ch one from the followin (3) Veronal OT correct ? etal oxides to metals.	g belongs to barbiturates?	ble tha	
due to more effect nce InI ₃ more stable ne tranquilizers are Meprobamate ich of the following Hydrogen is used to Heavy water is used	tiveness of inert pa e than InI and TII is e listed below. Whic (2) Valium g statements are No o reduce heavy me d to study reaction	ir effect in Tl. s more stable than TlI ₃ . ch one from the followin (3) Veronal OT correct ? etal oxides to metals.	g belongs to barbiturates?		
nce InI ₃ more stable ne tranquilizers are Meprobamate ich of the following Hydrogen is used to Heavy water is used	e than InI and TII is e listed below. Whic (2) Valium g statements are N o reduce heavy me d to study reaction	s more stable than TII ₃ . ch one from the followin (3) Veronal OT correct ? etal oxides to metals.			
ne tranquilizers are Meprobamate ich of the following Hydrogen is used to Heavy water is used	e listed below. Whic (2) Valium g statements are N o reduce heavy me d to study reaction	ch one from the followin (3) Veronal OT correct ? etal oxides to metals.			
ich of the following Hydrogen is used to Heavy water is used	g statements are N o reduce heavy me d to study reaction	OT correct ? etal oxides to metals.	(4) Chlordiazepoxide		
ich of the following Hydrogen is used to Heavy water is used	o reduce heavy me d to study reaction	tal oxides to metals.			
Hydrogen is used to Heavy water is used	o reduce heavy me d to study reaction	tal oxides to metals.			
leavy water is use	d to study reaction				
· · · · · · · · · · · · · · · · · · ·		mechanism			
Hydrogen is used to	a make caturated f				
C. Hydrogen is used to make saturated fats from oils.					
D. The H-H bond dissociation enthalpy is lowest as compared to a single bond between two atoms any element.					
E. Hydrogen reduces oxides of metals that are more active-than iron.					
oose the most app	below :				
B, D, only	(2) D, E only	(3) A, B, C only	(4) B, C, D, E only		
A. dipole - dipole forces					
~					
-					
E. dispersion forces.					
		••••			
		(+) D, C, D, E are			
	dipole - dipole force dipole - induced dip Hydrogen bonding covalent bonding. dispersion forces. pose the most app A, B, C, D are corr A, C, D, E are corr	dipole - dipole forces dipole - induced dipole forces. Hydrogen bonding covalent bonding. dispersion forces. bose the most appropriate answer A, B, C, D are correct. A, C, D, E are correct.	dipole - dipole forces dipole - induced dipole forces. Hydrogen bonding covalent bonding. dispersion forces. bose the most appropriate answer from the options given A, B, C, D are correct. (2) A, B, C, E are A, C, D, E are correct. (4) B, C, D, E are	dipole - induced dipole forces. Hydrogen bonding covalent bonding. dispersion forces. Dose the most appropriate answer from the options given below : A, B, C, D are correct. A, C, D, E are correct. (4) B, C, D, E are correct	

	NEET(UG)-2023 EXAMINATION (Held On Sunday 7th May, 2023)				
Constitution of the					
76.	Amongst the given options which of the following molecules / ion acts as a Lewis acid?				
	(1) H_2O (2) BF_3	(3) OH ⁻ (4) NH ₃			
Ans.	(2)				
77.	The right option for the mass of CO_2 produced by heating 20 g of 20% pure limestone is (Atomic mass of Ca = 40)				
	$\left[CaCO_{3} \xrightarrow{1200 K} CaO + CO_{2}\right]$				
	(1) 1.76 g (2) 2.64 g	(3) 1.32 g (4) 1.12 g			
Ans.	(1)				
78.	The relation between $n_{m'}$ (n_{m} = the number of permissible values of magnetic quantum number (m)) for a given value of azimuthal quantum number (ℓ), is				
	(1) $\ell = 2n_m + 1$ (2) $n_m + 2\ell^2 + 1$	(3) $n_m = \ell + 2$ (4) $\ell = \frac{n_m - 1}{2}$			
Ans.	(4)				
79.	The stability of Cu ²⁺ is more than Cu ⁺ sa				
	(1) enthalpy of atomization. (2) hydration energy.				
	(3) second ionisation enthalpy.	(4) first ionisation enthalpy.			
Ans.	(2)				
80.	Which one of the following statements is correct? (1) All enzymes that utilise ATP in phosphate transfer require Ca as the the cofactor.				
	 (2) The bone in human body is an inert and unchanging substance. (3) Mg plays roles in neuromuscular function and intemeuronal transmission. (4) The daily requirement of Mg and Ca the human body is estimated to be 0.2 - 0.3 g. 				
Ans.	(4) The daily requirement of Mg and Ca the human body is estimated to be 0.2 – 0.3 g.(4)				
81.	Which of the following reactions will NOT	give primary amine as the product ?			
Ś	(1) $CH_3CN \xrightarrow{(i) LiAlH_4}_{(ii) H_3O \oplus} \rightarrow Product$	(2) $CH_3NC \xrightarrow{(i) LiAIH_4}_{(ii) H_3O \oplus} $ Product			
	(3) $\operatorname{CH}_3\operatorname{CONH}_2 \xrightarrow{(i) \operatorname{LiAIH}_4} \operatorname{Product}_{(ii) \operatorname{H}_3 \operatorname{O} \oplus}$	et (4) $CH_3 CONH_2 \xrightarrow{Br_2 / KOH} Product$			
Ans.	(2)				
82.	The given compound				
	$CH = CH - CH - CH_2 CH_3$				
	is an example of				
	(1) aryl halide (2) allylic halide	(3) vinylic halide (4) benzylic halide			
Ans.	(2)				
Synt NEET (UG) / JE		ari Circle, Old Shivbari Road, Bikaner 92/93, web.www.synthesis.ac.in)			


	NEET(UG)-2023 EXAMINATION					
	(Held On Sunday 7th May, 2023)					
87.	Which amongst the following will be most readily dehydrated under acidic conditions ? (1) $H_{3C} \rightarrow H$ (2) $H_{0H} \rightarrow H$ (2) $H_{0H} \rightarrow H$					
	NO					
	NO_2 NO_2 OH					
	(3)		CH ₃			
	OH	Н	-113			
Ans.	(1)					
88.		in the reaction $A + B \equiv$	\implies D + D are 2	3 10 and 6 mc		
00.	The equilibrium concentrations of the species in the reaction A + B \implies D + D are 2, 3, 10 and 6 m L ⁻¹ , respectively at 300 K. Δ G° for the reaction is (R = 2 cal / mol K)					
	(1) -137.26 cal (2) - 1381.80 cal	(3) –13.73 cal	(4) 1372.60 cal			
Ans.	(2)	(5) 15.75 cu	(1) 13/2:00 cu			
89.	Given below are two statements :					
	Statement I : The nutrient deficient water bodies lead to eutrophication.					
	Statement II : Eutrophication leads to decrease in the level of oxygen in the water bodies.					
	In the light of the above statements, choose the correct answer from the options given below :					
	(1) Both Statement I and Statement II are false.					
	(2) Statement I is correct but Statement I	II is y false.				
	(3) Statement I is incorrect but Statement II is true.					
	(4) Both Statement I and Statement II are true					
Ans.	(3)					
90.	Which amongst the following options is the correct relation between change in enthalpy and change i internal energy					
	(1) $\Delta H = \Delta U + \Delta n_g RT$ (2) $\Delta H - \Delta U = -\Delta nRT$	(3) $\Delta H + \Delta U = \Delta nR$	(4) $\Delta H = \Delta U - \Delta$	n _g RT		
Ans.	(1)					
91.	Match List - I with List - II					
	List - I (Oxoacids of Sulphur)	List - II (Bonds)				
	A. Peroxodisul phuric acid	I. Two S-OH, Four S=				
	B. Sulphuric acid	II. Two S-OH, One S=	-			
	C. Pyrosulphuric acid	III. Two S-OH, Four S	-			
	D. Sulphurous acid Choose the correct answer from the option g	(IV. Two S-OH, Two S:	-0			
	(1) A-III, B-IV, C-I, D-II (2) A-I, B-III, C-IV, D-I					
Ans.	(1) A-111, D-1V, C-1, D-11 (2) A-1, D-111, C-1V, D-1	· (J) A-III, D-IV, C-II, C-I	. (ד) א־ז, ט־זוז, כ־.	LI, U ⁻ 1V		
AII3.	(+)					
Synthesis "Gyan Tower" Near Shivbari Circle, Old Shivbari Road, Bikaner (Mob. : 80030948-91/92/93, web.www.synthesis.ac.in) Page - 9						

	K Synthesis		-	3 EXAMINATION ay 7th May, 2023)		
96.	Consider the following compounds/species :					
	i.	ii.	/			
v. vi. po °						
	vii.					
The number of compounds/species which obey Huckel's rule is						
•		2) 2	(3) 5	(4) 4		
Ans. 97.	(4) What fraction of one edge centred octahedral void lies in one unit cell of fcc.					
	(1) $\frac{1}{3}$ (2)	$\frac{1}{4}$	(3) $\frac{1}{12}$	(4) $\frac{1}{2}$		
Ans. 98.	(2) Which complex compound is most stable :					
	(1) $[Co(NH_3)_3(NO_3)_3]$		(2) [CoCl ₂ (en) ₂]NO ₃		
	(3) $[CO(NH_3)_6]_2 (SO_4)_3$ (4) $[CO(NH_3)_4 (H_2O)Br](NO_3)_2$					
Ans. 99.	ns. (2)					
	a $Cr_2O_7^{2-} + bSO_3^{2-}(aq) + cH^+(aq) \rightarrow 2aCr^{3+}(aq) + bSO_4^{2-}(aq) + \frac{c}{2}H_2O(I)$					
the coefficients a, b and c are found to be, respectively - (1) 3, 8, 1 (2) 1, 8, 3 (3) 8, 1, 3 (4) 1, 3, 8						
Ans.	(4)					

Synthesis NEET (UG) / JEE-MAIN / ADVANCED

"Gyan Tower" Near Shivbari Circle, Old Shivbari Road, Bikaner (Mob. : 80030948-91/92/93, web.www.synthesis.ac.in)

